Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38488131

RESUMEN

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Relación Estructura-Actividad , Sustancias Intercalantes/farmacología , Tionas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Imidazoles/farmacología , ADN , Apoptosis , Simulación del Acoplamiento Molecular , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular
2.
Molecules ; 28(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446948

RESUMEN

The main aim of the current project was to investigate the effect of the linker size in 4-alkyl-5-aryl-1,2,4-triazole-3-thione derivatives, known as a group of antiepileptic drug candidates, on their affinity towards voltage-gated sodium channels (VGSCs). The rationale of the study was based both on the SAR observations and docking simulations of the interactions between the designed ligands and the binding site of human VGSC. HYDE docking scores, which describe hydrogen bonding, desolvation, and hydrophobic effects, obtained for 5-[(3-chlorophenyl)ethyl]-4-butyl/hexyl-1,2,4-triazole-3-thiones, justified their beneficial sodium channel blocking activity. The results of docking simulations were verified using a radioligand binding assay with [3H]batrachotoxin. Unexpectedly, although the investigated triazole-based compounds acted as VGSC ligands, their affinities were lower than those of the respective analogs containing shorter alkyl linkers. Since numerous sodium channel blockers are recognized as antiepileptic agents, the obtained 1,2,4-triazole derivatives were examined for antiepileptic potential using an experimental model of tonic-clonic seizures in mice. Median effective doses (ED50) of the compounds examined in MES test reached 96.6 ± 14.8 mg/kg, while their median toxic doses (TD50), obtained in the rotarod test, were even as high as 710.5 ± 47.4 mg/kg.


Asunto(s)
Anticonvulsivantes , Tionas , Ratones , Humanos , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Tionas/farmacología , Ligandos , Triazoles/química
3.
Cancer Med ; 12(16): 17193-17211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37492969

RESUMEN

BACKGROUND: Colorectal cancer is one of the most prevalent cancers in the world, but the research on its prevention, early diagnosis and treatment is still a major challenge in clinical oncology. Thus, there is a pressing requirement to find effective strategies to improve the survival of colon cancer patients. METHODS: Celecoxib has been accounted to be an effective antitumor drug, but may exhibit significant side effects. In recent studies, 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most commonly used reagents for the synthesis of sustained-release H2 S donors, has also been reported to inhibit cancer progression by affecting processes such as cell cycle, angiogenesis, and apoptosis. Therefore, we evaluated the therapeutic effect of the combination of ADT-OH and celecoxib on colorectal cancer through in vitro and in vivo, hoping to achieve better therapeutic effect and reduce the effect of celecoxib on gastric injury through exogenous administration of H2 S. RESULTS: Our results demonstrated that ADT-OH combined with celecoxib synergistically inhibited the proliferation and migration ability of human colorectal cancer HCT116 cells, altered cell cycle and cytoskeleton, increased intracellular reactive oxygen species (ROS), and promoted cell apoptosis. Noteworthy, in vivo studies also indicated the excellent antitumor therapeutic effect of the combination therapy without apparent toxicity. CONCLUSIONS: In general, our results provide a reasonable combination strategy of low-dose ADT-OH and celecoxib in the preclinical application of colorectal cancer.


Asunto(s)
Neoplasias del Colon , Tionas , Humanos , Celecoxib/farmacología , Celecoxib/uso terapéutico , Tionas/farmacología , Tionas/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Proliferación Celular , Línea Celular Tumoral
4.
Chem Biodivers ; 20(5): e202300054, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37026445

RESUMEN

New series of triazole-tetrahydropyrimidinone(thione) hybrids (9a-g) were synthesized. FT-IR, 1 H-NMR, 13 C-NMR, elemental analysis and mass spectroscopic studies characterized the structures of the synthesized compounds. Then, the synthesized compounds were screened to determine the urease inhibitory activity. Methyl 4-(4-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (9c) exhibited the highest urease inhibitory activity (IC50 =25.02 µM) among the compounds which was almost similar to thiourea as standard (IC50 =22.32 µM). The docking study of the screened compounds demonstrated that these compounds fit well in the urease active site. Based on the docking study, compound 9c with the highest urease inhibitory activity showed chelates with both Ni2+ ions of the urease active site. Moreover, the molecular dynamic study of the most potent compounds showed that they created important interactions with the active site flap residues, His322, Cys321, and Met317.


Asunto(s)
Simulación de Dinámica Molecular , Ureasa , Relación Estructura-Actividad , Tionas/farmacología , Triazoles/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/química , Estructura Molecular
5.
Neurochem Res ; 48(8): 2542-2551, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37061657

RESUMEN

Iron overload-induced oxidative stress is implicated in various neurodegenerative disorders. Given the numerous adverse effects associated with current iron chelators, natural antioxidants are being explored as alternative therapeutic options. Dithiolethiones found in cruciferous vegetables have emerged as promising candidates against a wide range of toxicants owing to their lipophilic and cytoprotective properties. Here, we test the dithiolethiones 3H-1,2-dithiole-3-thione (D3T) and 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) against ferric ammonium citrate (FAC)-induced toxicity in U-87 MG astrocytoma cells. Exposure to 15 mM FAC for 24 h resulted in 54% cell death. A 24-h pretreatment with 50 µM D3T and ACDT prevented this cytotoxicity. Both dithiolethiones exhibited antioxidant effects by activating the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor and upregulating levels of intracellular glutathione (GSH). This resulted in the successful inhibition of FAC-induced reactive oxygen species, lipid peroxidation, and cell death. Additionally, D3T and ACDT upregulated expression of the Nrf2-mediated iron storage protein ferritin which consequently reduced the total labile iron pool. A 24-h pretreatment with D3T and ACDT also prevented cell death induced by the ferroptosis inducer erastin by upregulating the transmembrane cystine/glutamate antiporter (xCT) expression. The resulting increase in intracellular GSH and alleviation of lipid peroxidation was comparable to that caused by ferrostatin-1, a specific ferroptosis inhibitor. Collectively, our findings demonstrate that dithiolethiones may show promise as potential therapeutic options for the treatment of iron overload disorders.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Humanos , Tionas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Glutatión , Sobrecarga de Hierro/tratamiento farmacológico , Hierro
6.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985690

RESUMEN

The treatment of infectious diseases is a challenging issue faced by the medical community. The emergence of drug-resistant strains of bacteria and fungi is a major concern. Researchers and medical professionals are working to develop new and innovative treatments for infectious diseases. Schiff bases are one a promising class of compounds. In this work, new derivatives were obtained of the 4-amino-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione reaction, with corresponding benzaldehydes with various substituents at position 4. The antibacterial and antifungal activities of all synthesized compounds were tested. Several new substances have shown moderate antifungal activity against Candida spp. The highest activity directed against C. albicans was shown by compound RO4, with a 4-methoxyphenyl moiety and an MIC value of 62.5 µg/mL. In order to check the toxicity of the synthesized compounds, their effect on cell lines was examined. Additionally, we tried to elucidate the mechanism of the antibacterial and antifungal activity of the tested compounds using molecular docking to topoisomerase IV, D-Alanyl-D-Alanine Ligase, and dihydrofolate reductase.


Asunto(s)
Antifúngicos , Tionas , Antifúngicos/farmacología , Tionas/farmacología , Simulación del Acoplamiento Molecular , Bases de Schiff/farmacología , Antibacterianos/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana
7.
Bioorg Chem ; 135: 106478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958121

RESUMEN

Cancer is associated with uncontrolled cell proliferation invading adjoining tissues and organs. Despite the availability of several chemotherapeutic agents, the constant search for newer approaches and drugs is necessitated owing to the ever-growing challenge of resistance. Over the years, DNA has emerged as an important druggable therapeutic drug due to its role in critical cellular processes such as cell division and maintenance. Further, evading apoptosis stands out as a hallmark of cancer. Hence, designing new compounds that would target DNA and induce apoptosis plays an important role in cancer therapy. In the current work, we carried out the synthesis and anticancer evaluation of 1-aryl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-ones/thiones (26 compounds) against selected human cancer cell lines. Among these, compounds 8ae, 8ad, 8cf, 10ad and Kenpaullone have shown good inhibitory properties against HeLa cells (IC50 < 2 µM) with good selectivity over the non-cancerous human embryonic kidney (Hek293T) cells. In cell cycle analysis, the compounds 8ad and 8cf have exhibited G2/M cell cycle arrest in HeLa cells. In addition, the compounds 8ad and 8cf induced apoptosis in a dose-dependent manner in the Annexin-V FITC staining assay. The DAPI staining clearly demonstrated the condensed and fragmented nuclei in 8ad, 8cf, 8ae and Kenpaullone-treated HeLa cells. In addition, these compounds strongly suppressed the healing after 48 h in in vitro cell migration assay. The DNA binding experiments indicated that compounds 8ae, 8cf, and 8ad as well as Kenpaullone interact with double-stranded DNA by binding in grooves which may interrupt the DNA replication and kill fast-growing cells. Molecular docking studies revealed the binding pose of 8ad and Kenpaullone at HT1 binding pocket of double-stranded DNA. Compounds 8ad and 8cf demonstrated moderate topo II inhibition which could be a possible reason for their anticancer properties. Compounds 8ad and 8cf may cause the topo II and DNA covalent complex, which leads to the inhibition of DNA replication and transcription. This eventually increases the DNA damage in cells and promotes cell apoptosis. With the above interesting biological profile, the new 1-aryl-2,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(4H)-one/thione derivatives have emerged as promising leads for the discovery of new anticancer agents.


Asunto(s)
Antineoplásicos , Tionas , Humanos , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Células HeLa , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tionas/farmacología , Azepinas/química , Azepinas/farmacología
8.
Arch Pharm (Weinheim) ; 356(1): e2200355, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36316247

RESUMEN

Two series of 1,3,4-thiadiazole (40a-o) and 1,2,4-triazole-5-thione (41a-l) derivatives bearing a 2-pentyl-5-phenyl-1,2,4-triazole-3-one ring were synthesized and then studied for their urease inhibitory activities using thiourea as a standard drug. Among the two groups, the first group (40a-o) did not show good activity while the second group (41a-l) showed excellent activity. Compound 41j (1091.24 ± 14.02 µM) of the second series of compounds showed lower activity than thiourea, while the remaining 11 compounds (41a-i, k, and l) showed better activity than thiourea (183.92 ± 13.14 µM). Among the 11 compounds, 41b (15.96 ± 2.28 µM) having the 3-F group on the phenyl ring showed the highest inhibitory activity. Urease kinetic studies of 41b, which is the most active compound, determined it to have an un-competitive inhibition potential. Moreover, in silico analysis against urease from jack bean with 27 new heterocyclic compounds and the reference molecule was carried out to see the necessary interactions responsible for urease activity. The docking calculations of all compounds supported stronger binding to the receptor than the reference molecule, with high inhibition constants. In addition, compound 40m was characterized by single-crystal X-ray diffraction analysis. X-ray analysis reveals that the structures of the compound 40m crystallize in the monoclinic P21/c space group with the cell parameters: a = 10.2155(9) Å, b = 22.1709(18) Å, c = 21.4858(17) Å, ß = 99.677(8)°, V = 4797.0(7) Å3 . X-ray diffraction analyses were also performed to gain insights into the role of weak intermolecular interactions and C-H…X (halogen) interactions in compound 40m that influence the crystal packing.


Asunto(s)
Tionas , Ureasa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tionas/farmacología , Cinética , Inhibidores Enzimáticos/química , Tiourea/química , Estructura Molecular
9.
Bioorg Med Chem Lett ; 79: 129068, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395994

RESUMEN

Four series of tetrahydro-2H-1,3,5-thiadiazine-2-thiones (series A and B including two novel enantiopure isomers), tetrahydro-2H-1,3,5-thiadiazine-6-thiones (series C) and N-3 ester derivatives of tetrahydro-2H-1,3,5-thiadiazine-6-thiones (series D) were synthesized and evaluated for their anti-inflammatory, analgesic and anti-oxidant activities. These THTT analogues specially series D were first time examined for their in vitro anti-inflammatory, in vivo analgesic and anti-oxidant activities. Among them lipophilic compounds (series B and D) were found to be highly active for anti-inflammatory evaluation with IC50 values between 5.1-16.9 and 4.1-32.4 µM, respectively when compared with the standard drug ibuprofen IC50 = 11.2 µM. The structure-activity relationship exposed the importance of lipophilic substituents especially ester and n-propyl group for inhibition of inflammation. The molecular docking studies demonstrated that all the active analogues of THTT have notable binding relations with Arg120 of the active sites of COX-1 enzyme either through CS moiety of the THTT nucleus or with COO attached at N-3 of THTT nucleus. In vivo analgesic activity of the selected THTT compounds 14, 17, 18, 19 (series B) and 28 (series D) were also carried out by acetic acid-induced writhing procedure. The compound 28 showed significant anti-nociceptive/analgesic activity at the oral dose of 5 mg/kg body weight with the percent protection (32.05 %) when compared with standard indomethacin at 10 mg/kg (48.83 %). Additionally, these compounds demonstrated the moderate level of antioxidant potential with IC50 values in the range of 60.9 to 93.6 µM (standard butylated hyroxyanisole; IC50 = 44.2 µM). These results indicated that this class of heterocyclic compounds may be a template specially to design better anti-inflammatory and analgesic agents.


Asunto(s)
Tiadiazinas , Tionas , Tionas/farmacología , Antioxidantes/farmacología , Tiadiazinas/farmacología , Simulación del Acoplamiento Molecular , Antiinflamatorios no Esteroideos/farmacología , Ésteres
10.
Sci Rep ; 12(1): 22146, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550279

RESUMEN

In the present investigation, derivatives from (2-6) containing pyrimidine-2-thione moiety incorporated with different heterocycles such as pyrazoline, phenyl pyrazoline, and pyrimidine were synthesized using different methods. These pyrimidine-2-thione derivatives were evaluated in-silico for their capability to inhibit the H-RAS-GTP active form protein with insight to their pharmacokinetics properties. According to our findings, compound 5a was selected for in vitro studies as it has the in-silico top-ranked binding energy. Furthermore, compound 5a induced apoptosis to panels of cancer cell lines with the best IC50 on MCF-7 breast cancer cells (2.617 ± 1.6 µM). This effect was associated with the inhibition of phosphorylated RAS, JNK proteins, and PI3K/Akt genes expression. Thus, compound 5a has upregulated p21 gene and p53 protein levels. Moreover, 5a arrested the cell cycle progression at the sub-G0/G1 phase. In conclusion, the synthesized compound, 5a exhibited potent antineoplastic activity against breast cancer cell growth by targeting RAS/ PI3K/Akt/ JNK signaling cascades.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Simulación del Acoplamiento Molecular , Tionas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Pirimidinas/uso terapéutico , Proliferación Celular , Estructura Molecular
11.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361953

RESUMEN

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Asunto(s)
Monofenol Monooxigenasa , Ribonucleótido Reductasas , Tionas/farmacología , Simulación del Acoplamiento Molecular , Acetofenonas/farmacología , ADN
12.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36450011

RESUMEN

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Tionas/farmacología , Células HeLa , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana
13.
ACS Chem Neurosci ; 13(23): 3291-3302, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399525

RESUMEN

Depression is a serious mental illness, mainly characterized as large mood swings and sleep, diet, and cognitive function disorders. NLPR3, one of the inflammasomes that can be activated by a variety of stimuli to promote the maturation and secretion of pro-inflammatory cytokines, has been considered to be involved in the pathophysiology of depression. In this study, the putative role of CY-09, a selective and direct inhibitor of NLRP3, was evaluated in the lipopolysaccharide (LPS)-induced mice. The results of the study indicated that CY-09 significantly decreased the levels of NLRP3 in the hippocampus of LPS-induced mice. In addition, CY-09 increased the sucrose preference and shortened the immobility time in LPS-induced mice, suggesting the antidepressant-like effects of inhibiting NLRP3 inflammasome. Biochemical analysis showed that LPS significantly activated the NLRP3/ASC/cytokine signaling pathway and caused microglial activation, while CY-09 prevented the changes. Moreover, CY-09 increased the brain-derived neurotrophic factor (BDNF) only in microglia but not in the whole hippocampus. Meanwhile, CY-09 did not promote neurogenesis in the hippocampus of LPS mice. In conclusion, the results of the study showed that the antidepressant-like effects of NLRP3 inhibitor CY-09 were mediated by alleviating neuroinflammation in microglia and independent of the neurotrophic function in the hippocampus.


Asunto(s)
Depresión , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Tiazolidinas , Tionas , Animales , Ratones , Inflamasomas/efectos de los fármacos , Lipopolisacáridos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tionas/farmacología , Tionas/uso terapéutico , Tiazolidinas/farmacología , Tiazolidinas/uso terapéutico , Enfermedades Neuroinflamatorias/complicaciones , Depresión/tratamiento farmacológico , Depresión/etiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
14.
Sci Rep ; 12(1): 13520, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941181

RESUMEN

SMIFH2 is a small molecule inhibitor of the formin family of cytoskeletal regulators that was originally identified in a screen for suppression of actin polymerization induced by the mouse formin Diaphanous 1 (mDia1). Despite widespread use of this compound, it is unknown whether SMIFH2 inhibits all human formins. Additionally, the nature of protein/inhibitor interactions remains elusive. We assayed SMIFH2 against human formins representing six of the seven mammalian classes and found inhibitory activity against all formins tested. We synthesized a panel of SMIFH2 derivatives and found that, while many alterations disrupt SMIFH2 activity, substitution of an electron-donating methoxy group in place of the bromine along with halogenation of the furan ring increases potency by approximately five-fold. Similar to SMIFH2, the active derivatives are also pan-inhibitors for the formins tested. This result suggests that while potency can be improved, the goal of distinguishing between highly conserved FH2 domains may not be achievable using the SMIFH2 scaffold.


Asunto(s)
Actinas , Proteínas Portadoras , Tionas/farmacología , Uracilo/análogos & derivados , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Forminas , Humanos , Mamíferos/metabolismo , Ratones , Estructura Terciaria de Proteína , Uracilo/farmacología
15.
Pak J Pharm Sci ; 35(3(Special)): 911-917, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35791587

RESUMEN

We report the promising urease inhibitory activity of four sets of tetrahydro thiadiazine thiones (THTT) namely 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine thiones: THTT 5-8 (set A) having alkyl/aryl substituents at N-3 and N-5 positions; THTT 9-12 (set B) and THTT 13-14 (set C) with 3-carboxylic acid derivatives and tetrahydro-2H-1,3,5-thiadiazine-6-thione esters 15-16 (set D). Gratifyingly, all four sets of THTT were recognized as promising inhibitors of urease enzyme. Among 12 tested compounds; THTT 6, 8, 10, 14 and 15 from each set respectively, demonstrated significant urease inhibitory activity with IC50 values between 11.2-29.8µM which is mostly found higher than that for thiourea, a standard urease inhibitor with IC50 value of 22.4µM. Furthermore, compound 7 showed almost the same level of inhibition (IC50 = 22.5µM) as of standard. In addition, molecular docking study supported the phenomenon that thiadiazinane ring itself is an active pharmacophore that binds through CH2 groups and S atom via carbon-hydrogen/π-sulfur interactions respectively to the active site of the urease enzyme. The optimistic results from this study suggest the use of thiadiazinane skeleton as a guided template for the advancement of new urease inhibitors in drug discovery.


Asunto(s)
Tiadiazinas , Tionas , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiadiazinas/química , Tiadiazinas/farmacología , Tionas/química , Tionas/farmacología , Ureasa
16.
Pak J Pharm Sci ; 35(2(Special)): 665-669, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35668568

RESUMEN

Seven derivatives of 1-phenyl ethyl group containing 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine-thiones (THTT) were prepared and examined for their antibacterial and antifungal properties by using Microplate Alamar Blue Assay (MABA) and agar tube dilution protocol respectively. In vitro antifungal potential was investigated against five human pathogens and compared with the standard drugs amphotericin B and miconazole. In vitro antibacterial activity was investigated against four pathogens and compared with the ofloxacin. All compounds exhibited very promising antifungal activities against all tested pathogens. Structure activity relationship showed the importance of the presence of 1-phenyl ethyl substituent at N-3 of THTT nucleus for antifungal effects. However, these compounds showed significant antibacterial activity only against S. aureus. The compound 6c of the series was found most active compound that displayed promising antifungal potential against all tested pathogens [Growth Inhibition (GI) = 100%], and also showed promising antibacterial potential against S. aureus (GI% = 83.49) which is very much closer to the standard ofloxacin (GI% = 88.05). The study may be useful in the development of improved antimicrobial agents.


Asunto(s)
Antiinfecciosos , Tiadiazinas , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Ofloxacino , Staphylococcus aureus , Relación Estructura-Actividad , Tiadiazinas/química , Tiadiazinas/farmacología , Tiazinas , Tionas/química , Tionas/farmacología
17.
Int Immunopharmacol ; 108: 108771, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35461109

RESUMEN

Astrocytes (AST) play an important role in the pathogenesis of neurological disorders, and their activation is involved in the progression of multiple sclerosis (MS). (6aS, 10S, 11aR, 11bR, 11cS)-10-methylaminododecahydro-3a, 7a-diaza-benzo (de) anthracene-8-thione (MASM), a novel derivative of matrine, exhibits vast pharmacological activities, such as anti-tumor, anti-fibrosis and immune regulation. In this study, we demonstrate that MASM is a promising agent for the treatment of experimental autoimmune encephalomyelitis (EAE). MASM not only inhibited inflammatory responses in LPS-stimulated astrocytes, but also suppressed the formation of reactive A1 astrocyte and maintained astrocytic functions, including the ability to promote synapse formation and phagocytose synapses and myelin debris. Importantly, MASM could significantly alleviate the development of EAE, with significant inhibition of inflammation, demyelination, axon loss and the body weight loss. Meanwhile, MASM also inhibited the activation of astrocytes and improved the function of BBB in vivo. These findings provide novel insights into the protective effect of MASM on EAE, which may be a promising drug candidate for treatment of EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Neoplasias , Animales , Antracenos , Astrocitos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Tionas/farmacología
18.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328726

RESUMEN

Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aß-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Tionas , Hidrocarburos Aromáticos con Puentes/farmacología , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Norbornanos , Tiocarbamatos , Tionas/farmacología , Fosfolipasas de Tipo C/metabolismo
19.
Chem Pharm Bull (Tokyo) ; 70(2): 111-119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35110431

RESUMEN

An efficient synthetic method for novel 4,4-disubstituted 3,4-dihydropyrimidin-2(1H)-ones 5 and -thiones 6 was developed. The cyclocondensation reaction of O-methylisourea hemisulfate salt 11 with 8 gives a tautomeric mixture of dihydropyrimidines 12 and 13 following acidic hydrolysis of the cyclized products to produce 5 in high yields. Thionation reaction of 5 at the 2-position smoothly proceeds to give 2-thioxo derivatives 6. These compounds 5 and 6, corresponding to the products of a Biginelli-type reaction using urea or thiourea, a ketone and a 1,3-dicarbonyl compound, have long been inaccessible and hitherto unavailable for medicinal chemistry. These methods are invaluable for the synthesis of 5 and 6, which have been inaccessible by conventional methods. Therefore, the synthetic methods established in this study will expand the molecular diversity of their related derivatives. These compounds were also assessed for their antiproliferative effect on a human promyelocytic leukemia cell line, HL-60. Treatment of 10 µM 6b and 6d showed high inhibitory activity similarly to 1 µM all-trans retinoic acid (ATRA), indicating that the 2-thioxo group and length of two alkyl substituents at the 4-position are strongly related to activity.


Asunto(s)
Antineoplásicos/farmacología , Cetonas/farmacología , Pirimidinonas/farmacología , Tionas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Cetonas/química , Estructura Molecular , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad , Tionas/síntesis química , Tionas/química
20.
ChemMedChem ; 17(7): e202100699, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35050549

RESUMEN

Metallo-ß-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino compounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, these compounds were unable to restore antibiotic susceptibility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiological activity, we synthesized and characterized compounds where the hydrazone-like bond of the Schiff base analogues was replaced by a stable ethyl link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but showed a significantly better activity on VIM-type enzymes, with Ki values in the µM to sub-µM range. The resolution of the crystallographic structure of VIM-2 in complex with one of the best inhibitors yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the ß-lactam susceptibility of VIM-type-producing E. coli laboratory strains and also of K. pneumoniae clinical isolates. In addition, selected compounds were found to be devoid of toxicity toward human cancer cells at high concentration, thus showing promising safety.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Humanos , Pruebas de Sensibilidad Microbiana , Tionas/farmacología , Triazoles/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...